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SIMULATION OF COMPLEX SHOCK REFLECTIONS
FROM WEDGES IN INERT AND REACTIVE GASEOUS MIXTURES

1. Advances in FCT Techniques

In this paper we describe new adaptations of the Flux-Corrected Transport (FCT)
algorithms developed by Boris and Book (1973, 1976) for sclving fluid equations, and
discuss their application to multidimensional shock reflections in inert and reacting
gaseous-mixtures. In particular, we consider planar constant-velocity shocks reflecting
from wedges, Under certain circumstances double Mach stems are formed. Historically
these have proven to be difficult to caleulate with high accuracy, although many schemes
have been available to analyze compressible flow on a computationally discretized mesh:
the method of characteristics, apline techniques, Glimm-type random choice schemes, and
finite element, finite difference, and spectral methods, We believe that the caleula-
tional difficulties experienced on this problem were the result of excessive numerical
diffusion, especially in the region of the contact surfave,

In any Fulerfan caleulation, numerical diffugion arises because material which has
Just entered a computational cell, and {s still near one boundary, becomes smeared over
thi whele cell. FCT minimizes thig effect. FCT algorithms can be constructed as a
wvelghted average of a low-order and a high-urder finite-difference schome, 1f the fluid
equations are written {n conservative form, both schemes are implemented using .trans-
portive fluxes. Fach flux deseribes the transfor of mass (er some other extonsive
quantity) from one point to a neighboring pelnt. ‘the precedure for assigning welghts
invelves limiting or "eorrecting” the fluxes at certain points, The higher-order schume
. 18 uged to the greatest possible extent, consistent with aveiding the introduction of
dispevsive ripples (undershoots and overshoots). The welghts for the Tow=order schenme
-are chosen to be just sufficient to eliminate these ripples, thus assuring the property
of "monotenfefty" or “positivity." The result {8 an algorithm which effectively reducos
to the higher-order scheme wherever the fluid prepertics change gradually, Near sharep
discontinuities, howover, onuugh diffusion 18 supplied to retatn menotonieity, At
shock fronts this procedure automatically produces the covreet loeal viscous heating.

the prototyps sccond-order finite-difference formula

arl o _on n f y R, B 7S TN TR T |

Py =By "“m“’;n * o) *.‘“?j»sw\) + gj-l) + "jﬁ“’;ﬂ' Bgh = vty hs_ll)
- tllugtrates the procedure. MHere § labels grid position, n denotes tiwe level and
LoV, @tléxJ* and Vigy are dinensionlens advection and diffusion voefficionts,
'résﬁecztbely. & vriteddh y [efticfee), where ¢ 18 a “elipping factor" woasuring the
extra-diffusion added to achieve posftivity., When ¢ » 0, the above schene 18 seeond-
ovdee; in the vieinity of shoiks ¢ * ) and it effectively reduces to first order.

A numerieal diffusion Reynolds number (Re),. ¢ 2L/céx can be deflned, whore I 18 the
characteridtic siaw of a strueture fn e Wow. Even the wost accurate specteal siou-
lations requive seeting ¢ » 1 o guarantee positivity lincarly. This glven rise to the
usual definftion of the numorfcal Roynolds nusbor, 2L/3x. Algorithas such as FCY which

Nanuscript tubeitted July 10, 1080, -




guarantee monotonicity nonlinearly can have average values ~<c7 ~ 10’1——10'2. intro~
ducing much less overall dissipation and permitting calculations with effective Reynolds
numbers such that Re '\:(Re)ND >>2L/8x.

Four advances in FCT techniques have enabled us to perform a series of shock and
detonation calculations with high accuracy. These techniques are easy to program, and
they have wide applicability to general quasi-linear hyperbolic equations (i.e., equa-
tions describing continuum conservation laws).

The first of these, a generalization of FCT due to Zalesak (1979), removes the
necessity of timestep splitting in multidimensional hydrodynamics. This reduces errors
associated with time splitting in regions of the flow which are nearly incompressible.
The second refers to the development of FCT algorithms in which the spatial derivatives
can be approximated to arbitrarily high order (fourth, sixth, eighth, etc., or pseudo-
spectral). These innovations, which relate to the traunsport algorithm itself, have
been implemented in a two-dimensional hydrocode which utilizes the leafrog-trapezoidal
(L-T) algorithm and is therefore dissipationless. Both complex and double Mach stem
structures are obtained (cf. Ben-Dor, 1978; Ben-Dor and Glass, 1978, 1979).

The third new technique, adaptive rezoning, is an extension to two dimensions of
the dynamic rezoning employed in detailed one-dimensional reactive flow simulations by
Oran, et al, (1979). This coneentrates needed spacial resolution in the vicinity of
moving shocks, contact discontinuities and reactive surfaces. The technique is illus-
trated with shock calculations using a time-split code (FAST2D), In air for M=5 and
8 =45°, the vesults fall very close to the boundary between regulat and Mach refleetion.
The calculated wall pressures are in detailed agreement with the results of Bertrand
(1972). The fourth technique is a generalization of the induction time approximation
used in eariier flame, ignition and shock work (Oran et al, 1980a, b). This provides a
simple, efficient, vet reasonably accurate global chemical kinvties package to be used
in connection with these comprehensive two-dimensional hydrodynamics calculations.

Section 2 describes the results of ealeulations in which a planar shoek is reflected
from a wedge {n an inert gas. In Section 3 we prosent the results of caleulations of
detonations initiated by sheck reflections in stoichiometric nixtures of R, in air at
low pressure. Sectien 4 summarizes our conclusions. T :

‘2. - Shoek Refleetions in Alr

The utility of these advanced FCT metheds has been: demonstrated by applying them
te tracsient reflections of planar shocks from woedges for various shock strengths M and
vodge angles 0 . For nonreacting flows at Mach numbors greater than about 2.5 and wodge
angles betwoen 20 and 50 degreos, deuble Mach stems can develop. Numorieal schemes
. proviously used for this problem reproduce qualitatively the wave structure and shape,
but have difficulty making accurate predictions of flow detatls such as demsity contours
(a concluslon drawn by Bea-Dor and Glass, 1978) even i the single Mach stew case. fo
our kiowlodge, sucecssful caleulations of the double Mach Rtem case have not yet boen
publighed. 1In this paper we discuss the series of caleulations summarized in ‘fable 1.

_ ‘Open boundary conditions arc used on the left, right, and tep vdges of the mesh,
t.0., density, pressure and veleeity are set equal to their pre=shock or post-shock

values, dopending on whother the incident shoek front has passed that peint. Reflecting

conditions arve imposed on the bottow of the wesh, which corresponds to the wedge surface.

Examples of the caleulated density contours and wave structure for the double and complex =

- Maeh reflection cases are shown tn Pig, 1. The incldent shoek, I, the contact surface,
C8, and the fieat and second Mach stoms, N, and M,, are indlcated {n Fig, la, Sote in
particular the forward curl of the contact surfaed acar the wall and the small region
- €4 by 7 wosh points) of high-density gas just to the lefe of (h polnt. where the contact
csurface impacts the wall., The lattee causes a socond peak i . v nressure and density
diseribution on the wall, as stiown 1o Fig. le.  The deeuracy v JhweLatculations fas buen
verified by comparison with experimontal donsity distyibutions along the wall, as shoun
An Pig. 2, and with onperimcntal prossure measurcmcnts (Bovtrand, 1972). Kote that T
provides adequate resolution of the key surfaces (contact surfeve and second Nach stewm)
0 vogloas ay small as 5 by 5 cells. . ‘ ‘ - o :
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Two additional cases were calculated with larger values of 6 (Fig. 3). As the
wedge angle increases, the Mach stem develops fwwre slowly, being geparated from the
wedge by a triple-point angle of only one or two degrees. [The triple-point angle o
is the angle subtended by the Mach stem as viewed from the end of the wedge at which
the shock was first incident (Fig. 4.] To reduce the size of the mesh needed, it is
necessary to calculate in the frame of the Mach stem and to rezone. For these calcula-
tions we employed the time-split code FAST2D (with a 150 x 50 mesh), which incorporates
an automatic continuous ("sliding zone") regridding procedure {Jran et al., 1979). For
the small ew cases discussed above, where regridding is necessary, FAST2D yielded re-
sults very similar to those obtained with the L-T code. The cases with wedge angles
of 44° and 46.5° constitute a severc test of the numerical algorithm because of the
small triple-point angle. Because a is approximately equal to 2.8° and 1.5°, respec~
tively, considerable spatial resolution and a large amount of running time are usually
necessary to get accurate flow fields. Figure 4 illustrates our adaptive rezone tech-
nique on a grid of 60 x 40 cells with varying cell dimensions, dx, dy. This method
requires one=fifth the number of cclls required in a uniform grid calculation. A
uniform region consisting of the smallest cells covers part of the incident shock
front, the Hach stems, and the reflected shock structure. Outside this finely gridded
region, we have transition zones in which the cell dimensions increase smoothly to their
maximum values, 1()6:»<mtn and lOéyml“.

We have investigated the accuracy of the numerical simulation by comparing the
results with experimental data  (Bertrand et al, 1972). Because the cases (¢ = 44°
and 46,5% are so similar, we will discuss only the latrer, The computed valu¥ of a
for 0 = 46,5° {g approximately 2,5° for a real-air equatlon of state and approximately
2° Yor an tdeal gas with ¥ = 1,35, Both agree with the measurements to within the
experimental ervors, v 2%, In Fig. 5, we compare the calculated (using a realealr
equat fon of state) and experimental values of the pressure at the surface of the wedge
for & = 46,%°, The agreement in the shapes of the pressure curve is striking—the
valued of the lower pressure peak, correspending to the MHach stem, are nearly identical,
FThe caleulated value of the second pressure peak is 11Z lower than the experinental
virlue and is thus within experimental uncertainty., Figure 6 shows the history of the
pressure on the wedge caleulated for an idenl gas with 7 = 1,35, VWo note that the curves
have much the same shape as for the real-alr simulations; however, the fivat pressure
peak iy again 117 lower than the experimental value. Figure 7 shows that the double -
“Mach veflection shock structure is well resolved in the sinulation, :

3. Getonations

We have alue considered anglogous shock reflections in reactive gases (stulchio-
metric mixtures of H, in alr) at low pressure (0.] atm). The induction time hypothesis
{e.g., Oran et al, 3980) represents thoe chemisery through a composite process, in which
reactants begin to cembine inte combustion products enly after a finite time haw elapxed,
The rate at which the encrgy-releasing reactions proceed dependd upon a single paraseter,
the induction time. This in turn 18 a funetiun of thc lueal thermodynamic varlables.

, Figure 8 shous the time dovelopment of a d@t@n@ttnn fnitiated by a uvak rcflvctlng
shock. The inéident shock was chosen go that the pressure behind it {8 teo low to cause
. ‘detonation te take place within ehe time of the calevlation, As with the ealeulation -
of Section 2, we have used open boundary conditions at the sides and top of the system, .
The sequonce of gix pressure contour plots traces the evolution of a detonation vave '
© infriated by complex Mach roflection at the surface of the wedge.  Figure Ba ghows the -
| pregsute contours corresponding to an ineident sheck with 8 = 25° and M = 4.0 vhich -
has Just begun to reflect. The Mach stem {s inittally too Ynall to be resoived. In
Flig, B the Maeh stom bocemes discornible, but as yot wo apparent reaction has n@enrrcd‘
By feane {¢) the waterial has begun te fgalte at a position well behind the. current
focation of the Mach stem. Uhew the Hach stowm passed that position the pressurs
incroase heated the mixture sufficioatly te cause igaition after a short induction
tine characteristic of the W —aty wixture., 1In frames (d) and (¢), at later tines,
the pressure at the Nach steh cont fnues to grow, leading to atiorrer chavacteristie
induction times for material betwen the Mach stem and the original {gnltion polne,
Thus we wee the ignited reglon decelerate aloag the vedge surface toward the ach stom,
Bocause Gote © cnergy ls belug reloased: as the. butntng uoutluuas. the boundary of the

¥
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ignited region also accelerates in the direction of the reflected shock front, com-
pressing and heating the material into which the burned gases expand. In the last
frame the burn front has overtaken the reflected shock and Mach stem, as we see from
the decrease in the separation of the pressure contours near both locations. A stable
detonation pattern has not yet emerged, however. This is evident from the bending out
of the Mach stem and the lower density of contours between the Mach stem and the re-
flected shock/detonation front,

We anticipate that shock tube experiments will confirm this wave structure and
that such reactive flow calculations will be extremely useful {n quantitatively ex-
plaining the experimentally observed multicell structure of detonations (Oppenheim 1970).

4, Conclusions

Our caleulations of complex and double Mach reflection are in close agreement
with measurements for shocks reflecting in air from wedges. Because of the accuracy
and speed of FCT algorithms and the effectiveness of adaptive rezoning, the calculations
are accurate and economical even when the Mach stem develops very slowly., All of the
tmportant features (location of surfaces of discontinuity, pressure loading on the
wedge surface, density contours) are correctly predivted. The results de not depend
sensitively on whether the L-T or FASTID code is used.  Of the advances discussed in
Section 1, multidimensional flux limiting and the adoptive vegridding technigue seem
to be  the most efficacious for reflections in nonreactive media. We convlude that FCT
algorithas reduce numerical diffusion deamatically, assuring qualitative improvements
fn aeeuracy. e believe that  to achieve comparable accuracy and ef ficiency, other
hydrocodes must cmploy similar nonlinear algorithms and rcaonlng techulqu@a.

Gur caleutations {n reactive gas mixtures show that detonations tend to begin
where a sevondary pressure peak arises as the slip surface approaches the wedge.
Bovaure of the flnite {nduction time in our kineties model, the deionation begins
~somewhat hohind thin pressure peak,  1he high reselutfon our caleulations achieve
eviables us to follow mattiple refloctions and is capable of providlng qunntitdtivc
prvdiclions of dwt unatinn phoenomena,
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DOUBLE MACH REFLECTION

o
(=4

5

CELL,y{cm)
- 2
%, £
4

0 [ ] i 1 . 1 i J L
180 140 130 120 HO KO 90 8 70 60 S50 40 30 20 0 O
CELL ,x (cm)
i
REDUCED DENSITY CONTOURS (M,=6.9,6,320°%,y 21.35) 393.85 s
€ 00T ‘e _
& j \m-.y>uk ' .
): .fr o ..
3 ‘ Ej R ;:,:‘ T ( y \
3] 99 K- 8 ' Tele 20
0 N J X ‘\“n‘ By i 1%"54 4‘ ¥ o
150 40 130 20 0O 00 90 B8O TO 60 S0 40 30 20 0 O
CELL ,x {cm)
WAL L DENSITY, PRESSURE 393.85 us
200 40
. ) ) . 7 L ‘-
= 50 M€, " §
€E oy . 00 W= “ o
8 A T — "
s EEH::éh! P v 3
; 100 420 o
g . 1
- ’ =
3
50 410 2
-]

- I L x ) i e L 8 - _— o
ousouo 130 120 1O 100 S0 B0 VO 60 30 40 30 20 0 O
CELL,» (em)

Pig. 1 - (a) Wave structure and density contours for double Mach
reflection from a wedge; (b) reduced density contours (o/p ) for
complex Mach reflection with levels chosen to agree with those
of Ben-Dor and Glass (1978); (¢) corresponding pressure und den-
sity profiles on the wedge, plotted against cell nuaber.
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Fig. 2 - Comparison of the calculated density profile on the
wedge (Fig. 1(b)) with weasure * values (Ben-Dor and Glass, 1978.
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shock coming from the left.
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